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Abstract

There have been many algorithms proposed for adaptive control which will

provide globally asymptotically stable controllers if some stringent conditions

on the plant are met. The conditions on the plant cannot be met in practice as

all plants will contain high frequency unnodeled dynamics therefore, blind im-

plementation of the published algorithms can lead to disastrous results. This

paper uses a linearization analysis of a non-linear adaptive controller to de-

monstrate analytically the following design guidelines which alleviate some of

the problems associated with adaptive control in the presence of unmodeled dy-

namics:

1. The gain in the estima^:on mechanism should be kept small. This will

make the estimation loop slow.

2. The overall effect desired of the controller should be reasonable.

Don't try to make the algorithm do too much.

3. The system should be sampled slowly to alleviate the effects of

unmodeled dynamics.

The points made are further demonstrated by simulation results.
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1. INTRODUCTION

There have been many algorithms proposed for adaptive control which will

provide globally asymptotically stable controllers if some stringent conditions

on the plant are met. The conditions on the plant cannot be met in practice as

all plants will contain high frequency unmodeled dynamics therefore, blind im-

plementation of the published algorithms can lead to disastrous results Ill.

This paper uses the linearization analysis introduced in (21 of a non-linear

adaptive controller to demonstrate analytically the followine design guidelines

which alleviate some of the problems associated with adaptive control in the

presence of unmodeled dynamics:

1. The gain in the estimation mechanism should be kept small. This will

make the estimation loop slow.

2. The overall effect desire of the controller should be reasonable.

Don't try to make the algorithm do too much.

3. The system should be sampled slowly to alleviate the effects of

unmodeled dynamics.

The value of these guidelines is demonstrated by examples using the adap-

tive algorithms of Goodwin, Ramadge and Cains 131. Further analysis using

other algorithms is performed in (41. Note that while the guidelines discussed

in this paper do much to alleviate some problems of practical adaptive control,

the end results should not be called robust because the problems of disturb-

ances in adaptive controllers as discussed in f4] and (51 remain.

2. AN ADAPTIVE CONTROLLER AND THE LINEARIZATION ANALYSIS

The actual plant is represented by the equation:

-d

y(t) - pq B u(t) (1

AI
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and the reference model is given by:

YM(t) ( (r(t)1 (2)A(n)
H

where B, A, R., AM are polynomials in q-l the backward shift operator, i.e.,

q-fu(t)) - u(t-1). The superscript in parenthesis, as in R( n ) , gives the

order of the polynomial.

The system is designed assuming dp -d and the degrees of 9 and A are m and

n respectively.

Auxiliary variables are simply delayed versions of the input and output

variables, as follows:

gM3~m)
vr(t) - - - r(t)1 (5)

A(n)

H

The scalar control input to the plant is:

u(t) - kT(t)w(t) (6)

with k(t) being a vector of time-varyinp: gains,

r kr(t vr(t)
i k(t) - [k (t) w _t) (t) ? (7)

The specification of the algorithm is completed by the addition of the

parameter adjustment mechanism:

k(t) k - y Xd(t)e(t)

k~t) -k o --r (-

- 1-,-d l _T(t)!t (t>
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where

e(t) - y(t) - vm(t) (Q)

_d(t) - q-d[fw(t)J (10)

and ygp chosen so that yjp < 2 (11)

The controller structure is displayed in Figure 1.

Since r(t) is prefiltered by --M the goal of the control loop is to
AM

become a dead beat controller, i.e., have the closed loop transfer function

* d , shown in the box in Figure 1, be a pure delay of d steps with 
a

unity gain. From Figure 1, we obtain

-d
F * * q d p k k X p Q P t

It A~ q ( 1 2 )

A* -dAO-q-|K(u *(n-2))-,,,, RK*(n-1)

V

If the order of the plant model is the same as the order of the plant and

the delay is modeled correctly there is enough freedom to achieve

Ri * q'd - W ad (13)

A*

and the controlled plant output will match the model output.

The error equation is given below:

e(t) _ R*B*q-dp kT(t)w(t) * - ( |rd) (14)

k*A* AM A*

The error system is displayed in Figure 2. This system in non-linear as w(t),

!.d(t) and e(t) all depend on y(t).

The equations of DA2 are analyzed by linearizing the system about a

nominal set of parameters. The signals w(t) from eqns. (3)-(5) are represented

as follows:I v(t) - w*(t) * 6v(t) (15)
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and the parameters, k(t), are represented as follows:

k(t) - k* + 6k(t) (16)

Assume that both the parameters and the outputs are close to their desired

values so that 6w(t) and 6k(t) are small.

Linearizing the system about v*(t), k* and assuming that the reference

input, r, is constant, the signal w* can be taken as a constant and the error

system of Figure 2 becomes the linear and time-invariant system of Figure 3.

Define

d = T*x* (17)l~*T*

so that 0 < d* < 1.

The error system can then he represented as in Figure 4 with

-Bdp
GE(q-I) B (18)

(l-Q-d)k*A*
r

The following analysis is performed by first choosing a desired system

k* about which to analyze the system. The behavior of the system
AC r

near the desired operating point is established by performing a root locus for

the error system of Figure 4 using d* as a parameter.

3. ANALYSIS OF SYSTEM WITH NO UNMODFD DYNAMICS

Consider first the case when the system is modeled properly. As was men-

tioned in Section 2 it is possible to achieve

x Bq d p  q-d (13)

AC

with

k- (19)
r XP

• _
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Substituting eqns. (13) and (IQ) into eon. (IR) yields:

-' W A (20)
l-q-d

The d*-root loci for the error system of Figure 4 with Gir as in eqn. (20)

are given in Figure 5a for d-1 and in Figure 5b for d-3. In both cases, it can

be seen that the linearized system in stable if

1 < yd*gp < 2 (21)

Indeed, this in exactly the condition for global stability given in 13).

Thus, for this algorithm with no unmodeled dynamics, the local stability analy-

sis performed in this section gives the same condition as the global stability

proof performed in 131.

If one could choose y so that

Yd*gp = 1 (22)

the error system itself would be deadbeat, i.e., the error would become zero

after dp steps where dp is the properly modeled pure plant delay.

From eon. (16), one can see that d* is close to unity for a large range of

reference inptits. Therefore, if the plant gain gp is known, en. (22) can be

satisfied for a large range of reference inputs by choosing.
1

= (23)
gp

Indeed the choice of y given by eqn. (23) is implied as the proper way to

choose the adaptation gain in 131. Although this choice of gain produces a

very fast and weil behaved error system when no unmodeled dynamics are present,

we will see in Section 5 that the gain of eqn. (23) will be far too large in

the presence of unmodeled dynamics. Large gains in the presence of unmodeled

dynamics will produce unstable adaptive systems.
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4. AN EXA4PLE OF ANALYSIS IN THE PRESENCE OF UNMIODELED DYNAMICS

When there are unmodeled dynamics present in the plant, the desired system

can no longer be chosen so that its output exactly matches the model output.

The desired system must now be chosen to match the model as closely as

possible.

The example used in this section will consist of a first order plant with

second order unmodeled dynamics.

(229
y(t) - fu(t)1 (24)

The model will be

3
+3 = [r(t)J (2)

In order to obtain a discrete-time system which is equivalent to the sys-

tem of eqn. (24) the standard technique of discrete-time control system analy-

sis called hold equivalence was used (see 161, Section 3.4). The continuous-

time plant of eqn. (24) is preceded by a zero-order hold and followed by an im-

pulse sampler which is synchronized with the zero-order hold. The resultinp

discrete-time system is equivalent to the original continuous-time system in

that both systems will produce the same output at the sampling instants if the

input to each system is constant from one sampling instant to the next.

Although anti-aliasing filters (see [61), are usually included in

discrete-time controller designs, such filters are not specifically treated

here. Any filter, such as an anti-aliasing filter, operating upon the plant

output can be considered as part of the plant. Indeed, since the presence of

an anti-alissing filter is often ignored when designing the adaptation mechan-

ism, it is reasonable to consider an anti-aliasing filter as part of the unmod-

eled dynamics of the plant.

4-
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For our initial investigation a sampling period of T=0.n4 seconds was

used. This represents fairly fast sampling, since it is approximately ten

times as fast as the fastest dynamics in the plant.*

The discrete-time description of the plant is:

y(t) (0.00361)(l*0.196q'l)(1+2.763q-l)q-1  (u(t)) (26)

(1-0.961q'l)(l-(O.547 0O04)q-1)(l-(0.547-iO. 44) -1)

The model was chosen as the discrete-time equivalent of eqn. (25)

YH(t) C'12)qI fr(c)J (27)
1-( .88)q-I

Note the presence of the non-minimum phase zero at -2.763 in the discrete-

time version of the plant as predicted in 171. The validity of the linearized

analysis is unaffected by this non-minimum phase zero.

S. THE IMPORTANCE OF THE ADAPTATION CAIN

Figure 6 shows a k*-root locus which determines the poles of the nominal
y

controlled plant of eqn. (12) for the plant of eqn. (26).

A set of gains which will produce a stable nominal controlled system is

given by:

k* a -0.8; k* - 1.32 (28)

Y r

The position of the poles of AL q with the parameters of eqn. (28)
A*

are indicated by boxes (0) in Figure 6.

The yd*-root locus of the error system poles given by eqn. (18), using the

parameters of eqn. (28), is shown in Figure 7. From Figure 7 it can be seen

that the error system is unstable for

yd* > .35 (29)

The importance of the sampling interval in determining the
stability of the adaptive control system in the presence of
unmodeled dynamics is discussed in Section 7.



Figure 8 shows the results of a simulation generated with the parameters

initialized at the values given in eqn. (2R) and with

y-0.2; r-O.l; yd*00.04 (30)

The system is well-behaved.

Vigure 9 shows the results of the same simulation hut with

y-0.2; r-lO.0; yd*=.199 (31)

As expected from the yd*-root locus of Figure 7 the system is

oscillatory.
*i

If yd* is too large then there exists no nominal system for which the

error system is stable. This is shown in Figure 10 which gives the k*-root

y
locus of the linearized error system of Figure 4 with

yd = .q4 (32)

For this numerical example, the analysis shows that if yd* is close to

0.94, instability problems will ensue, while if the value of yd* is smaller

that of eqn. (32), the yd*-root locus of Figure In will pass through the unit

disk indicating that a set of parameters for which the linearized system is

stable exists.

Thus if we let ya and r is increased yd* will approach O.q4 and the

system will go unstable.

Figure 11 shows the simulation result with

yal.O; ral.5 (33)

The value r-l.5 corresponds, through eqn. (17). to d*=.Rl. In this case. there

are sets of parameters for which the linearized system is stable. The

parameters of the simulation converge to such a set of parameters.

Figure 12 shows the results of a simulation with r increased to

r=3.1 (34)

This value of reference input corresponds, through ean. (17), to d*=.95. Now
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there is no set of parameter values for which the error system is stable and

the plant output blows up.

Thus, the first design guideline has been shown:

In order to maintain stability in the presence of unmodeled

dynamics, it is necessary that the adaptation gain, y, of the system

be kept small and the adaptation proceed slowly.

A few remarks are in order here:

Remark 1: The adaptation gain of around 1.0 which is the limit for any chance

of stability is an order of magnitude smaller than the gain which

would be picked using the guidelines of eqn. (23) and ignoring the

high frequency unmodeled dynamics.

Remark 2: While arbitrarily fast adaptation is theoretical possible f8], the

above example demonstrates that the concept is extremely dubious

given more practical assumptions.

Remark 3: The linearization techniaue shown here provides good guidelines for

the limits of the size of the adaptive gains necessary for

stability. Such gains, however, may not be sufficiently small for

arbitrary inputs and initial parameter estimates.

7. THE IMPORTANCE OF THE NOMINAL CONTROL LOOP

In order to study the ability of the algorithm to match the reference

model in the presence of unmodeled dynamics, we return to study the nominal

controlled system of eqn. (12) when the nominal parameter values of eqn. (28)

are in effect along with the plant of eqn. (26) and the model of eqn. (27).

The nominal controlled system with the parameters of eqn. (28)

B*qd = (.0046)q-l(l+O.196ql)(l*2.763q-l) (35)

A* (l-.82q-l)(1-.79q-l)(l-.45q- I)

* . .. .
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allows the nominal closed-loop controller of Figure 1,

V(t) = ('0046)(.I2)q-1(I+O'I96q-1)(I 2"763q-I Jr(t)] (36)

(l-.R8q-l)(l-.82q-l)(l-.79q-l)(l-.45o - I)

to match the model's d.c. gain but does not provide an overall reasonable match

of the model. In fact, no values for the paratmeters, k* and k, will allowY r

even approximate model matching.

The reason that this algorithm cannot even approximately match the model

in the presence of unmodeled dynamics is that the nominal control loop,

A* , must converge to a dead-beat controller no matter what the model

is. Due to the dead-beat structure of the algorithms all the poles of

t*p*q-dp must be moved near the origin to provide for good model matching.
A*

This cannot occur for this example as Figure 6 shows. The prefilter of r(t) by

g followed by a dead-beat controller is a poorly designed nominal control

Am
loop in the presence of unmodeled dynamics. It requires much larger feedback

gains than are necessary to match the model. Other algorithms, for example,

191 and [10), provide structure which, if chosen correctly, allow approximate

model matching in the presence of unmodeled dynamics. In using the added

flexibility of other algorithms the lessor of this example should remain.

Design the nominal control loop so that approximate model matching

can be easily attained even in the presence of unmodeled dynamics.

Remark 1: It may occur that the dominant dynamics of the nominal control loop

can be made to match the dominant model dynamics but, in order to do

so, the unmodeled poles are moved close to the stability boundary.

This situation will severely limit the size of the adaptation gains

for which such a nominal system is stable as the unmodeled poles

will be pushed over the stability boundary in the d*-root locus.

7"'
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Remark 2: The linearization technique shown here is a good technique to use in

deciding what is a reasonably designed control loop in the presence

of unmodeled dynamics.

8. THE IMPORTANCE OF THE SAM4PLING INTERVAL

There is an additional design parameter in discrete-time systems which can

increase tolerance to unmodeled dynamics. That parameter is the sampling in-

terval.

Let the system of eqn. (24) be sampled at a rate of T-.4, instead of

T-.04. Such a sampling rate is fairly slow in that it represents five times

the speed of the modeled pole; however, sampling of the unmodeled dynamics

occurs at barely once per cycle. The equivalent discrete-time system is now

given by

y(t) = (0.629)(l+.0399q-1)(l+.004q-l)q-1 u(t)1 (37)

We note there is no longer a non-minimum phase zero, as was the case in

eqn. (26) where the plant was sampled faster. Indeed, the poles and zeroes of

the unmodeled dynamics are very close to each other so that their effects

almost cancel.

Figure 13 shows the k -root locus of the nominal controlled plant of eqn.
Y

(12) when the open loop plant is described by eqn. (37). From Figure 13, we

notice that all the nominal control system poles can be placed close to the

origin and that the nominal closed-loop controller of Figure I can be made to

match the model fairly closely.

The yd*-root locus of Figure 14 then shows that the unodeled dynamics

hardly come into play allowing the full yd*-2 of eqn. (21) gain with retention

of stability.
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Figure 15 shows the results of a simulation made with the system sampled

at T-.4 and
1

S- = 1.58; r-lO.0 (38)
p

The parameters were started at what would he their desired values if no

unmodeled dynamics were present

k* . -1.06; k* = I.SR (39)
y r

The system behaves as if there were no unmodeled dynamics at all. The

plant and the model output in Figure 15 coincide.

Figure 16 shows the same type of simulation but with the parameters start-

ed out at zero. -The system adjusts quickly to follow the model again as if no

unmodeled dynamics were present. Thus, the third design guideline has been

demonstrated:

Sample the system slowly enough to remove the effects of unmodeled

dynamics.

Remark 1: Anti-aliasing filters will help the situation if they are considered

part of the modeled dynamics and the order of the adaptive

controller is increased to accommodate the filters. Otherwise, they

simply add to the problems of unmodeled dynamics.

Remark 2: Much of the benefits of slow sampling depends upon the movement of

the zeroes of the discrete-time system with chanping sampling rates.

See [7) for more on this subject.

Remark 3: Again, the linearization technique applied here provides a good

final check to see if the sampling is slow enough.

9. CONCLUSIONS

In this paper the following design guidelines for adaptive controllers

have been demonstrated analytically:
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1. In order to maintain stability in the presence of unmodeled dynamics,

it is necessary that the adaptation gain of the system he kept small

and that the adaptation proceed slowly.

2. Design the nominal control loop so that approximate model matching can

be easily achieved even in the presence of unmodeled dynamics.

3. Sample the system slowly enough to remove the effects of unmodeled

dynamics.

Although the demonstration was made for one algorithm via example, the

guidelines hold far more generally. in 141, other algorithm are used in analy-

tical demonstrations of the guidelines.

In addition, the linearization analysis introduced in 12) and used in this

paper is shown to provide a method of analyzing adaptive controllers vith re-

spect to how well they follow the design guidelines.

Finally, we note that in addition to the problem; faced by adaptive con-

troller vhich are alleviated by adhering to the design guidelines addressed

here, there are other problems with adaptive controllers 151 which need to be

addressed in order to obtain an easily usable design methodology.
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